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Abstract. The event-based model constructs a discrete picture of dis-
ease progression from cross-sectional data sets, with each event corre-
sponding to a new biomarker becoming abnormal. However, it relies on
the assumption that all subjects follow a single event sequence. This is
a major simplification for sporadic disease data sets, which are highly
heterogeneous, include distinct subgroups, and contain significant pro-
portions of outliers. In this work we relax this assumption by considering
two extensions to the event-based model: a generalised Mallows model,
which allows subjects to deviate from the main event sequence, and a
Dirichlet process mixture of generalised Mallows models, which models
clusters of subjects that follow different event sequences, each of which
has a corresponding variance. We develop a Gibbs sampling technique
to infer the parameters of the two models from multi-modal biomarker
data sets. We apply our technique to data from the Alzheimer’s Dis-
ease Neuroimaging Initiative to determine the sequence in which brain
regions become abnormal in sporadic Alzheimer’s disease, as well as the
heterogeneity of that sequence in the cohort. We find that the gener-
alised Mallows model estimates a larger variation in the event sequence
across subjects than the original event-based model. Fitting a Dirichlet
process model detects three subgroups of the population with different
event sequences. The Gibbs sampler additionally provides an estimate of
the uncertainty in each of the model parameters, for example an individ-
ual’s latent disease stage and cluster assignment. The distributions and
mixtures of sequences that this new family of models introduces offer
better characterisation of disease progression of heterogeneous popula-
tions, new insight into disease mechanisms, and have the potential for
enhanced disease stratification and differential diagnosis.

1 Introduction

The sequence in which biomarkers become abnormal provides a simple, intuitive
description of disease progression, giving insights into the underlying disease biol-
ogy and a potential mechanism for disease staging. The sequence of biomarker
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abnormality in sporadic neurodegenerative diseases, e.g. Alzheimer’s disease,
has been a topic of intense debate amongst neurologists [1]. Reconstructing this
sequence for sporadic neurodegenerative diseases is difficult because the position
of subjects with respect to the full disease time course is unknown. Typically
clinical diagnoses are used as a time proxy, but this limits the temporal reso-
lution of the sequence, e.g. in Alzheimer’s disease there are usually only three
clinical diagnosis categories: cognitively normal, mild cognitive impairment and
Alzheimer’s disease [2]. Additional complications arise due to the long disease
time course [3] and inherent heterogeneity of sporadic disease datasets. Many dif-
ferent factors contribute to this heterogeneity [4,5], for example genetic disease
subtypes, mixed pathology, environmental factors, and misdiagnosed subjects.

The event-based model [6] considers disease progression as a series of events,
where each event corresponds to a new biomarker becoming abnormal. By con-
sidering cross-sectional patient data as snapshots of a single common event
sequence, the event-based model is able to probabilistically reconstruct the order-
ing of events across subjects, without relying on a-priori disease staging. Taking
samples of the posterior probability of this sequence provides insight into the
uncertainty in this single event ordering. The application of this model has been
demonstrated in familial Alzheimer’s disease and Huntington’s disease [6] to
determine the sequence in which regional brain volumes become abnormal, and
in sporadic Alzheimer’s disease to determine the sequence in which cerebrospinal
fluid (CSF) markers, cognitive test scores, and a limited set of regional atrophy
and brain volume biomakers become abnormal [7]. Young et al. [7] found that
this sequence is different in APOE4 positive individuals, with increased genetic
risk of Alzheimer’s disease, compared to the whole population, suggesting that
the whole population contains a proportion of subjects who do not follow the
single ordering of events encoded by the event-based model.

The assumption made by the event-based model in [6] and [7] of a single
ordering of events in all subjects is a major simplification for heterogeneous
sporadic disease datasets. In this work we relax this assumption by considering
a family of models that allow for multiple and distributed orderings of events.
The first is a generalised Mallows model [8], which parameterises the variance in
the single ordering, allowing subjects to deviate from the central event sequence.
The second is a Dirichlet process mixture model [9], which allows for subgroups of
subjects that follow different event sequences. Previous work [10] on generalised
Mallows event-based models relied on a well-defined control population and a
complete set of biomarkers for each subject. Here we re-formulate this model to
remove the reliance on a well-defined control population, allowing the model to
be fitted to heterogeneous sporadic disease datasets, and to handle missing data,
providing a multi-modal picture of disease progression. We formulate a Gibbs
sampling technique that further provides samples of the uncertainty in the model
parameters. We additionally introduce a new model: Dirichlet process mixtures
of generalised Mallows event-based models, and develop a Gibbs sampler to
estimate its parameters [11]. We apply these models to determine the sequence in
which FDG-PET, CSF markers, cognitive test scores, and a large set of regional
brain volumes become abnormal in sporadic Alzheimer’s disease.
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2 Models

2.1 The Event-Based Model

The event-based model of disease progression consists of a set of events
{e1, . . . , eN} and an ordering σ = (σ(1), . . . , σ(N)), where σ(k) = i means that
event ei occurs in position k. In practise we only observe a snapshot of the
event sequence for each subject, taken at an unknown stage k. If a subject is
at stage k in the sequence σ the events eσ(1) . . . eσ(k) have occurred and events
eσ(k+1) . . . eσ(N) have yet to occur. This adduces a partition of the event set, or
partial ranking, γk = eσ(1), . . . , eσ(k)|eσ(k+1), . . . , eσ(N), where the vertical bar
indicates that the first set of events precedes the second. The occurence of event
ei in subject j is informed by biomarker measurement xij . The generative model
of the biomarker data is

kj ∼ P (k),

xσ(i),j ∼ p(xσ(i),j |eσ(i)) if i ≤ kj ,

xσ(i),j ∼ p(xσ(i),j |¬eσ(i)) otherwise.

p(x|e) and p(x|¬e) are probability density functions on observing biomarker
measurement x given that event e has or has not occurred respectively. P (k) is
a prior on the disease stage k.

2.2 The Generalised Mallows Event-Based Model

We formulate the generalised Mallows event-based model by using a gener-
alised Mallows model to parameterise the variance in a central event sequence π
through the spread parameter θ = (θ1, . . . , θN−1). Each subject then has their
own latent ordering σj , which is assumed to be a sample from a generalised
Mallows model. The generative model of the biomarker data in the event-based
model is therefore preceded by

π,θ ∼ P (π,θ|ν, r),

σj ∼ GM(π,θ).

GM(π,θ) = 1
ψ(θ) exp [−dθ(π, σ)] is a generalised Mallows distribution with

ψ(θ) =
∏n−1

j=1 ψn−j(θj) =
∏n−1

j=1
1−e−(n−j+1)θj

1−e−θj
. dθ(π, σ) is the generalised

Kendalls tau distance [8], which penalises the number of pairwise dis-
agreements between sequences. P (π,θ|ν, r) is a conjugate prior over the
generalised Mallows distribution parameters of the form P (π,θ|ν, r) ∝
exp

(
−ν

∑
j [θjrj + lnψn−j(θj)]

)
[12].
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2.3 Dirichlet Process Mixtures of Generalised Mallows Event-Based
Models

Dirichlet process mixtures of generalised Mallows models assume that each sub-
ject has their own central ordering πj and spread parameters θj , which are sam-
pled from a discrete distribution G that is drawn from a Dirichlet process [9].
A Dirichlet process mixture is a generative clustering model where the num-
ber of clusters is a random variable, meaning that the number of clusters is
detected automatically depending on the concentration parameter α. The gen-
erative model of the biomarker data in the event-based model is now preceded
by the process

G ∼ DP (α, P (π,θ|ν, r)),

πj ,θj ∼ G,

σj ∼ GM(πj ,θj),

where DP (α, P (π,θ|ν, r)) is a Dirichlet process [9]. Each data point πj can be
characterised by an association with a cluster label cj ∈ 1, . . . , C and each cluster
c with a set of generalised Mallows parameters σc and θc.

3 Inference

3.1 The Event-Based Model

Inference in the event-based model can be performed by taking Markov Chain
Monte Carlo (MCMC) samples of P (σ|X) = P (X|σ)P (σ)

P (X) where

P (X|σ) =
J∏

j=1

[
K∑

k=0

P (k)

(
k∏

i=1

p(xσ(i),j |eσ(i))
N∏

i=k+1

p(xσ(i),j |¬eσ(i))

)]

. (1)

3.2 The Generalised Mallows Event-Based Model

We use Gibbs sampling to infer the parameters of the generalised Mallows event-
based model. This consists of two stages. First, generating a set of sample
event sequences σ1:J . We sample from an augmented model [10], by alternat-
ing between sampling a subject’s ordering σj and disease stage kj , which are
used to deterministically reconstruct their partial ranking γj . The Gibbs sam-
pling updates are therefore

σ(j) ∼ P (σ|γ = γj , π,θ),

k(j) ∼ P (k|σ = σj ,Xj).

Second, sampling the model parameters given the set of sample orderings σ1:J

using the updates
π ∼ P (π|θ, ν, r, σ1:J ),

θk ∼ P (θk|π, ν, r, σ1:J ).
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3.3 Dirichlet Process Mixtures of Generalised Mallows Event-Based
Models

We formulate another Gibbs sampler to infer the parameters of Dirichlet process
mixtures of generalised Mallows event-based models. We generate a set of can-
didate sample orderings σ1:J,1:C , disease stages k1:J,1:C , and partial rankings
γ1:J,1:C , which are conditioned on the parameters for each cluster via the updates

σ(j,c) ∼ P (σ|γ = γjc, πc,θc),

k(j,c) ∼ P (k|σ = σjc,Xj).

From these samples we sample the cluster assignment cj of each subject con-
ditioned on the cluster assignments of the other subjects c−j , where c−j is the
set of cluster assignments for all subjects except subject j, the subject’s sample
ordering for each cluster σj,1:C , disease stage kj,1:C and their biomarker data
Xj . We then update the generalised Mallows model parameters for each cluster,
πc and θc, from the set of subject orderings assigned to each cluster, σc. So we
have the updates

c(j) ∼ P (c|c−j , σj,1:C ,θ, α, ν, r,Xj , kj,1:C),

π(c) ∼ P (π|θ = θc, ν, r,σc),

θ
(c)
k ∼ P (θk|π = πc, ν, r,σc).

4 Implementation

4.1 ADNI Dataset

We considered 382 subjects (135 cognitively normal subjects, 149 mild cognitive
impairment, 98 Alzheimer’s disease) who had a 1.5 T structural MRI (T1) scan
at baseline. We calculated the total volume (left plus right hemisphere) of 82
regions in the Neuromorphometrics parcellation (http://neuromorphometrics.
org:8080/) for each subject, correcting for head size variance by regressing
against total intracranial volume. Segmentation was performed using the Geo-
desic Information Flow framework [13]. We retained the 35 regions having sig-
nificant differences between cognitively normal and Alzheimer’s disease subjects
using the Wilcoxon rank sum test with p < 0.01. We downloaded biomarker val-
ues from the ADNI database (adni.loni.usc.edu) for CSF markers (Aβ1−42, tau,
p-tau), cognitive test scores (MMSE, RAVLT, ADAS-Cog), and global FDG-
PET metabolism.

4.2 Model Fitting

We compare the result of fitting the event-based model, generalised Mallows
event-based model and Dirichlet process mixtures of generalised Mallows event-
based models to the ADNI data set for the set of 42 biomarker abnormality

http://neuromorphometrics.org:8080/
http://neuromorphometrics.org:8080/
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events described. Following previous work [6] we model the probability that a
biomarker is normal, p(x|¬e), as a Gaussian distribution, and the probability
that a biomarker is abnormal, p(x|e), as a uniform distribution covering the
full range of observed values to reflect the range of severity that corresponds to
an abnormal biomarker. We use a mixture model to fit these distributions to
the data to account for a proportion of outliers in the control population. In
subjects that had missing data points we imputed the biomarker values such
that p(x|e) = p(x|¬e), i.e. it is equally probable that the event e has or has not
occurred. The prior probability that a subject is at a particular disease stage
P (k) is assumed to be uniform. To fit the generalised Mallows model we need to
sample σ from P (σ|γ, π,θ). We approximate this by sampling from a generalised
Mallows model for each of the event sets in the partial ranking γ separately;
the set of events γe that have occurred and the set of events γ¬e that have
yet to occur. We sample σe ∼ GM(πγe

,θγe
), and σ¬e ∼ GM(πγ¬e

,θγ¬e
). This

means that the precedence of events specified by the partial ranking is preserved,
and that the central ordering of the generalised Mallows model for each event
set, πγe

and πγ¬e
, has the minimal Kendalls tau distance [8] from the central

ordering π of the full generalised Mallows model. We sample k from P (k|σ,Xj)
using Eq. 1, i.e. P (k|σ,Xj) ∝ ∏k

i=1 p(xσ(i),j |eσ(i))
∏N

i=k+1 p(xσ(i),j |¬eσ(i)). The
remaining sampling updates follow the algorithm in [11]. We sample π exactly
using a stage-wise algorithm, and θ using a beta function approximation. We
used the Beta-Gibbs algorithm [11] to update the Dirichlet process mixture
model cluster assignments cj , weighting the probability each subject belongs to
each cluster by P (Xj |σj,c, kj,c), and the generalised Mallows model parameters
πc, θc for each cluster. We fix the priors to be ν = 1, r = 1, α = 1. We initialise
π randomly, γe as the set of events with p(x|e) > p(x|¬e), γ¬e as the set of events
with p(x|e) ≤ p(x|¬e), and the Dirichlet process mixture to have 25 clusters.

5 Results and Discussion

5.1 The Event-Based Model

Figure 1 shows a positional variance diagram of the MCMC samples of the single
ordering of events returned by the event-based model. We visualise a few key
stages of this sequence in the top row of Fig. 3 to show the spatial correspondence
of the sequence of regional volume loss estimated by the model. We find that
CSF markers are the first to become abnormal, followed by cognitive test scores,
then memory-related brain regions, then FDG-PET, and then other Alzheimer’s
disease-related brain regions. This sequence complements the findings of other
studies, but provides a much more detailed picture of the regional progression of
volume changes than has been seen previously in sporadic Alzheimer’s disease,
and a direct comparison of the sequence of regional changes relative to a multi-
modal set of biomarkers. Fonteijn et al. [6] looked at the regional progression
of volume loss but in familial Alzheimer’s disease and using atrophy rates. The
results in Young et al. [7] show a multi-modal sequence of biomarker abnormal-
ity in sporadic disease but for a small set of regional volumes, and hippocampal
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Fig. 1. Central ordering estimated by the event-based model: Positional variance dia-
gram of the MCMC samples of the maximum likelihood event sequence σ. The events
on the y-axis are ordered by the maximum likelihood sequence estimated by the model.
Each entry of the positional variance diagram represents the proportion of samples in
which a particular event appears in a particular position in the central ordering, rang-
ing from 0 in white to 1 in black. A black diagonal corresponds to high certainty in the
ordering of events, whereas grey blocks in the diagram mean that the events permute.

Fig. 2. Key for Figs. 3 and 5, generated using the BrainColorMap software [14].

and whole brain atrophy rates from short-term longitudinal MRI. Here we show
the first multi-modal sequence of biomarker abnormality in sporadic Alzheimer’s
disease, including a large set of regional volumes. We are able to construct this
picture from entirely cross-sectional data, and incorporate biomarkers with miss-
ing values.
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Fig. 3. Comparison of the central ordering estimated by the event-based model (top)
with the generalised Mallows model (bottom) (see key in Fig. 2). We display the results
for six stages: stage 6, 12, 18, 24 and 36, where each stage number corresponds to the
number of biomarkers that have become abnormal. Each biomarker (brain region, CSF,
cognitive test or FDG-PET) is coloured according to the proportion of the population
in which it has become abnormal by a particular stage along the central ordering. This
proportion is estimated for the event-based model by the number of MCMC samples
(Fig. 1), and for the generalised Mallows model by the probability (calculated using the
central ordering π and spread θ) of an event appearing at or before a particular stage.
This proportion ranges from 0 in yellow to 1 in red. Regions not included in the model
are shown in grey. At each stage yellow biomarkers can be interpreted as being normal,
red biomarkers as being abnormal, and orange biomarkers as varying in whether they
have become abnormal across the population (Color figure online).

5.2 The Generalised Mallows Event-Based Model

The generalised Mallows event-based model estimates both the central ordering
of the events and the variance in this single event ordering across the population
(Fig. 3). Figure 3 compares the central ordering π and variance θ estimated by
the generalised Mallows event-based model, i.e. the range of event sequences
across the population, with the central ordering estimated by the event-based
model. The central event sequence has a similar ordering to the event-based
model, but the variance in this central ordering of events increases, as shown
by the increase in the number of orange regions in Fig. 3. By using our Gibbs
sampling technique we further obtain estimates of the uncertainty in each of
the model parameters, as well as the latent variables included in the model, for
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Fig. 4. Estimate of the uncertainty in a subject’s disease stage obtained by using Gibbs
sampling to fit the generalised Mallows event-based model. We show an estimate of
the probability of each stage for an example cognitively normal subject (green), mild
cognitive impairment subject (blue), and Alzheimer’s disease subject (red). Each stage
corresponds to the number of biomarkers in the sequence that have become abnormal.

example a subject’s disease stage (Fig. 4). Fitting the generalised Mallows event-
based model means that the uncertainty in this stage accounts for the variance
in the ordering of the events across the population.

5.3 Dirichlet Process Mixtures of Generalised Mallows
Event-Based Models

We fitted a Dirichlet process mixture of generalised Mallows event-based mod-
els to allow for clusters of subjects that follow different sequences of events, of
which each cluster has its own central ordering πc and variance θc. The Dirichlet
process mixture model identifies three main clusters in the data, with an aver-
age proportion of 0.48 (± 0.02), 0.24 (± 0.10), and 0.29 (± 0.10) subjects being
assigned to each cluster respectively over the Gibbs samples. Figure 5 compares
the estimated central ordering and variance for each of the clusters. The first
two clusters look more Alzheimer’s disease-like than the third cluster, produc-
ing a similar event sequence to the event-based model and generalised Mallows
model (Fig. 3), with CSF biomarkers and memory-related brain regions becom-
ing abnormal early in the sequence. The third cluster likely captures outliers that
do not fit the Alzheimer’s disease sequence of events. The ordering of events for
the third cluster consists of only mild cognitive deficits and no CSF abnormal-
ities, perhaps representing a normal aging event sequence, or simply reflecting
that regional volume loss is a noisy measure on a cross-sectional level. The vari-
ance θc is greater for the clusters of the Dirichlet process mixture model than
the generalised Mallows model (as shown by an increase in the number of orange
regions in Fig. 5 compared to Fig. 3), likely because each cluster only contains
a proportion of the population, meaning that there are fewer subjects to fit the
model to, and due to the uncertainty in the cluster assignment of each subject.
Our Gibbs sampling technique returns samples of all of the model parameters.
For example, we are able to estimate the uncertainty in the disease stage of each
subject for both models, and the cluster assignment of each subject from the
Dirichlet process mixture, producing a similar diagram to Fig. 4.
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Fig. 5. As Fig. 3 but for the clusters identified by the Dirichlet process mixture of
generalised Mallows event-based models (top to bottom: clusters 1 to 3).

6 Conclusions

We proposed a generalised family of event-based models that relax the assump-
tion of a common event sequence over the population in different ways. We for-
mulated these models so that they work for a large multi-modal set of sporadic
disease biomarkers, and developed a Gibbs sampler that provides an estimate of
the uncertainty on each model parameter. We fitted this family of models to the
ADNI dataset to determine the ordering of a much more extensive, multi-modal
set of biomarkers than has been seen previously. We find that the generalised Mal-
lows model estimates a similar event sequence to the original event-based model,
but with a larger variation across subjects. Fitting a Dirichlet process mixture
model detects subgroups of the population with different event sequences.
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Many possible extensions are interesting to consider in the future. In their
current form these new models do not provide much additional clinical util-
ity, and further validation is required to demonstrate support for the particular
event sequences described and increased model complexity. However, these new
models have the potential to provide much richer information than the origi-
nal event-based model. Future work will extend the Dirichlet process model to
incorporate data from different disease datasets, allowing the automatic extrac-
tion of biomarker orderings in different diseases and mixed pathology. The sam-
pling techniques described naturally extend to incorporate multiple time points
within an individual [10]. Extending these models to include longitudinal data
will provide richer datasets for characterising the heterogeneity in individual
event sequences. The family of models described here have a large number of
parameters, developing hierarchical models [15] will reduce the required number
of parameters by capturing sections of the sequence that are common or distinct
amongst subjects to allow more robust fitting to cross-sectional data.

The family of disease progression models we describe are potentially applica-
ble to any disease or developmental process. The multiple orderings of events
described by these models have potential use for outlier detection, differential
diagnosis and to characterise disease subtypes for improved patient stratification.
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